Progress Report # 1

02/26/2021

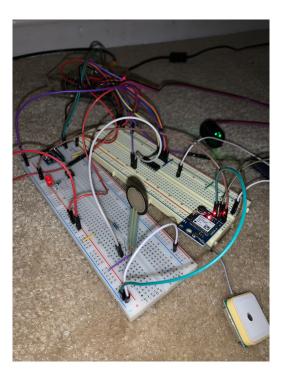
Albin Alex, Andrew Gambino, Eric Holsworth,

Bradley Jean, and Padmini Yerramasu

Technical Section

Week 2:

We were tasked to create a project title/delivery form, abstract/description, test plan, and work breakdown structure (WBS). We completed all of these tasks/subtasks in their entirety. The graphs of these tasks can be seen within the administrative section. No technological advancement was made during this period, so none will be shown/discussed.


Week 3:

Our main tasks were to connect all of the sensors to the Raspberry Pi 0 w(RSP0w) and have the sensors be completely functional with the proper communication protocols. These tasks were accomplished in their entirety. We have a single python file importing the code from each individual sensor and running simultaneously to report (print) data within the console with a one-second delay. The data obtained as shown in the console from all of the sensors are as follows:

Fall Check: None BPM: 76.23888182973316	-
MC: 20416 Fall Check: None BPM: 73.90072669047912	
MC: 20224 Fall Check: None BPM: 74.92507492507492	k
MC: 20288 Fall Check: None BPM: 73.74631268436578	-

The current setup of all the sensors connected to the Raspberry Pi 0 (using their appropriate communication protocols) are as follows:

Picture of the Raspberry Pi with all the sensors on a breadboard:

Week 4:

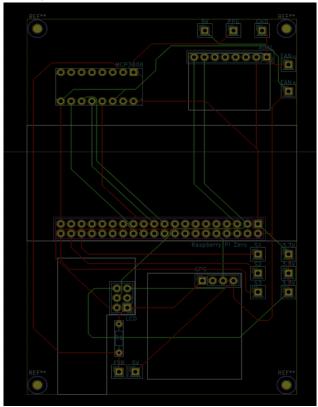
We had tasks/subtasks to accomplish that included initial testing and interfacing the sensors. We individually tested each sensor with external devices to make sure that the data received from each sensor was accurate. For example, we tested the heart beat sensor against a pulse oximeter. The data had a maximum variance of +-5 bpm. We also tested the GPS latitude/longitude detection against Apple/Google maps to record how accurately it tracked our current location. Every sensor obtained data that was greater than 87% accuracy. Lastly, we ensured that our code could interface with AWS and send a text message to the emergency contacts with a warning and GPS location of the user.

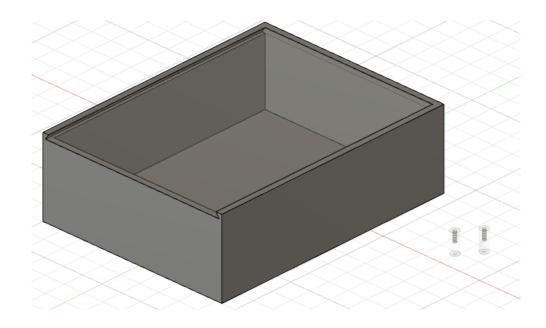
Pulse Oximeter vs Heart beat sensor picture:

GPS(lat/long) vs Google or Apple Maps Picture:

Latitude=38.8246591667 Longitude=-77.299462 Altitude:104.3 Timestamp: 02:00:27 Google Maps Link: https://www.google.com/maps/search/?api=1&query=38.8246591667, -77.299462 Apple Maps Link: https://maps.apple.com/?11=38.8246591667,-77.299462 Latitude=38.8246521667 Longitude=-77.2994508333 Altitude:102.5 Timestamp: 02:00:28

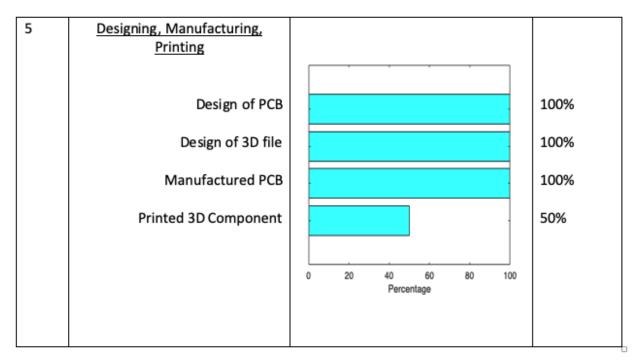
Google Maps Link: https://www.google.com/maps/search/?api=1&query=38.8246521667, -77.2994508333


Apple Maps Link: https://maps.apple.com/?11=38.8246521667,-77.2994508333


Week 5:

Our main tasks were to design, manufacture, and print a PCB and 3D print design for our E-band. Both were completed in their entirety. The PCB will be a soldered circuit containing all of our components for the E-Band. Also included in the design is a fan to keep the Raspberry Pi 0 cool (this is to ensure hardware reliability and resist heat against the patient's skin). The 3D print will house all of the components on the PCB. This will protect the components against any external damage that might occur while wearing the E-Band.

Picture of E-band PCB design:



Picture of the 3D File:

Administrative Section

Week	Tasks	Status of Completion	Percent of Completion
2	Deliverables		
	Project Title Delivery Form		100%
	Project Description/Abstract		100%
	Test Plan		100%
	WBS		100%
		0 20 40 60 80 100 Percentage	
3	Communication Protocols & <u>Connections</u>		
	SPI & i2C		100%
	Connect All Sensors		100%
		0 20 40 60 80 100 Percentage	
4	Initial Testing & Interfacing		
	Sensors functional on breadboard		100%
	Accuracy of Sensors		87%
	Operational Code with AWS		100%
		0 20 40 60 80 100 Percentage	

Results Achieved in Reporting Period

Item	Cost	Person who Purchased Item	
Pulse Ox	\$21.15	Albin	
1st GPS Receiver	\$11.65	Albin	
2nd GPS Receiver	\$19.00	Padmini	
LCD Screen	\$19.02	Eric	
МСР	\$7.00	Brad	
2 FSRs	\$110.00	AJ	
PPG Sensor	\$25.00	Padmini	
New Pi	\$5.29	Eric	
Neo6m GPS	\$19.00	Padmini	
РСВ	\$50.70	AJ	
TENS unit	28.79	Albin	
Battery Pack	\$12.50	Nathalia	
Fan	\$6.99	Nathalia	
3D Print Filament	\$23.99	Nathalia	

Micro USB Male Connector	\$4.25	Nathalia
2x3 Male Header	\$0.24	Nathalia
1x4 Male Header	\$0.50	Nathalia
1x4 Female Header	\$1.70	Nathalia
1x8 Female Header	\$2.34	Nathalia
2x20 Female Header	\$3.60	Nathalia
1k Thermistor	\$5.46	Nathalia

Table of Funds (as of 2/26)

		Estimated Man Hours			
		492 Total	493 Deliverable	493 Project	Total
Albin	Alex	55	9	22	86
Andrew	Gambino	52	8	18	78
Eric	Holsworth	51	8	17	76
Bradley	Jean	50	7	21	78
Padmini	Yerramasu	52	7	18	77

Estimation of Man Hours

Plans for Next Reporting Period

Before the next reporting period, there are some tasks that need to be completed to stay on schedule. One of these tasks is to 3D-print the enclosure for the device. In addition to this, the components and headers need to be soldered to the PCB. The finished PCB needs to be fitted into the enclosure to confirm that the two fit together properly. The next task is to create and attach a sleeve to hold the enclosure on the forearm. After the PCB, enclosure, and sleeve have all been assembled together, the next task is to begin testing. There are many individual parts that need to be accomplished in order to complete testing. During testing, the device will be worn by multiple individuals to get an assortment of data from multiple users. The device will be worn during daily activity for long periods of time. The data recorded will be stored in the Amazon Web Server. While the user is wearing the device, he/she will conduct experiments to surpass the thresholds of different sensors.

There will be videos to demonstrate that the device is functioning. These demos will take place during testing when the device has been completely assembled. There will be multiple

videos to demonstrate what actions were used to surpass sensors' thresholds and show the independent variables in our experiment that affect the output of the device. Another demo will show the interaction between the user and the device when the input data indicates that the user may be experiencing a seizure.

One problem area that needs to be addressed is creating a dome structure for the FSR. This dome structure will provide better contact between the FSR and the skin to measure more accurate readings on muscle contraction.

Answers to Questions

Overall, our project is on schedule. However, we ran into integration and manufacturing issues. Certain components have been shipped late, hence the soldering of the components to the PCB will be delayed. One problem we encountered was in selecting a GPS module that outputted reliable results. We decided to interface the NEO-6M GPS module with the rest of the sensors. Overheating of the PCB board and Raspberry Pi Zero W was another problem we encountered. Hence, a fan will be installed on the enclosure of the Raspberry Pi Zero W. A design problem we faced was minimizing the surface area of the PCB board while incorporating all sensors and components.